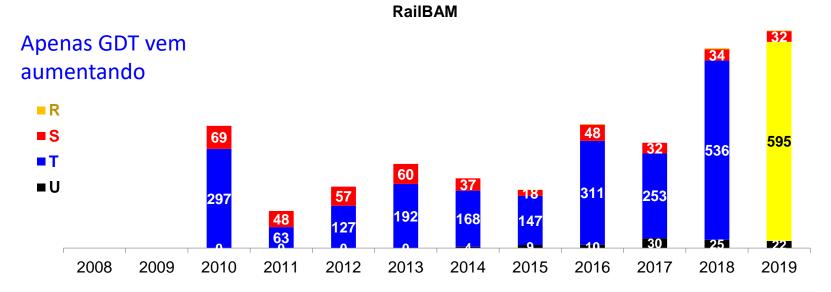


INFLUÊNCIA DA RESERVA ELÁSTICA DE TRUQUES FERROVIÁRIO NA VIA PERMANENTE E VAGÕES MRS

Nilton de Freitas Lucas de Castro Valente Felipe César Moreira Ciríaco Admilson Martins da Silva Ramon Henrique de Paula Dutra


RailBAM vs Excesso de Carga e Reserva Elástica

Introdução

De 2016 a 2018 houve um aumento significativo em alarmes de RailBAM. Após análise dos rolamentos verificou-se que "Brinelamento" era o defeito que mais aumentou, encontrado geralmente na capa, sendo ocasionado por impacto no rolamento. Além desta evidência, também notou-se que as indicações de alarme de RailBAM ocorriam em mais de um rolamento por vagão, o que não é muito comum, sendo que o maior percentual de alarmes ocorreram em GDT e em truques Ride Master Retrofit 6.1/2"x9" e Swing Motion 6.1/2"x9". Neste período também foi relatado aumento no carregamento de vagões acima da capacidade nominal no mesmo período do aumento dos alarmes.

Limite de carregamento de vagões

Os vagões da MRS foram projetados para circular nos seguintes limites de Peso Bruto Máximo (PBM):

• Vagão manga T - 130t (Truques Ride master 6.1/2"x9", Ride Control 6.1/2"x9", Barber S2-F 6.1/2"x9" e Swing Motion e rodeiros com mancal 6.1/2" x 9" – Tipo K);

Manga	РМВ	Eixo	Diferença entre Truques
T (130)	5%	10%	10%

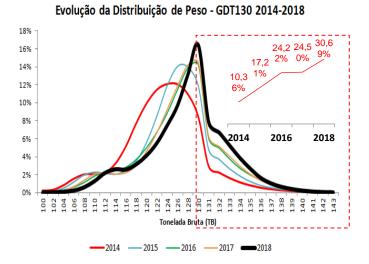
Estes são os limites para os quais os vagões foram projetados. Assim, não se deve ter como rotina a utilização acima destes."

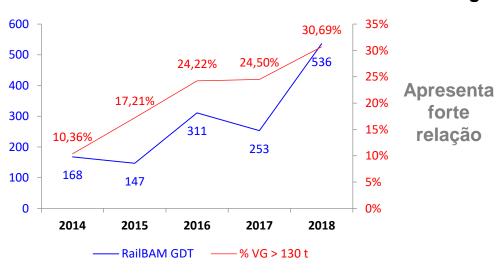
Em 2015 foi solicitado pela Engenharia de Transportes a revisão dos limites da Especificação Técnica de Engenharia (ETE) de peso de carregamento dos vagões, pois já eram praticados valores maiores do que a ETE.

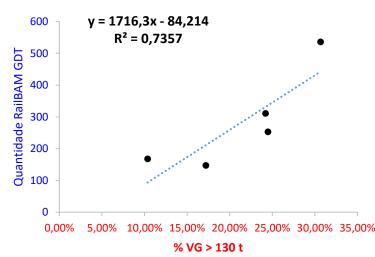
Limite de carregamento de vagões

Como os rolamentos apresentavam baixo índice de falhas, o foco da revisão foi voltado para a dinâmica do vagão "Relatório Técnico do TTCI (TD07-001 - Modelling Imbalanced Loads — 2007)", assim garantindo que desvios pontuais de carga acima do PMB não colocaria a operação em risco. Contudo, carga superior ao PBM compromete a vida útil dos componentes dos Vagão e da VIA

Manga	РМВ	Eixo	Diferença entre Truques	Até 06/2015	
T (130)	5%	5 10% 10%			
	+ 5%	+ 12%	+ 15%		
Manga	РМВ	Eixo	Diferença entre Truques	Após 06/2015	
T (130)	10%	22%	25%	06/2015	

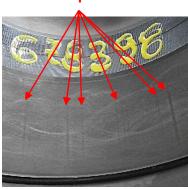

Neste mesmo período foi solicitado um controle rígido para a VALE referente a eixo com carga superior a 36t/eixo (visando as Obras de Arte). Os terminais da VALE conseguiram reduzir estes valores através de uma melhor distribuição na carga do vagão, o que posteriormente possibilitou um maior carregamento médio do vagão. Porém o percentual de vagões com PBM maior que o nominal aumentou.




Impactam vagões – Elevada quantidade de RailBAM em GDT

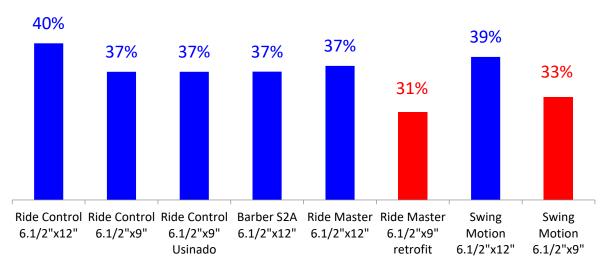
2014 a 2018 houve um aumento no carregamento de vagões acima da capacidade nominal, sendo que os vagões são projetados para carregar o peso nominal e não mais que o nominal.

RailBAM vs Carregamento > 130 t


Impactam vagões – Elevada quantidade de Brinelamento

Fotos encaminhadas pela Produção Industrial mostrando os eventos com Brinelamento, na capa do rolamento

Marca de impactos dos roletes na capa



Impactam vagões – Reserva Elástica nos Truques GDT

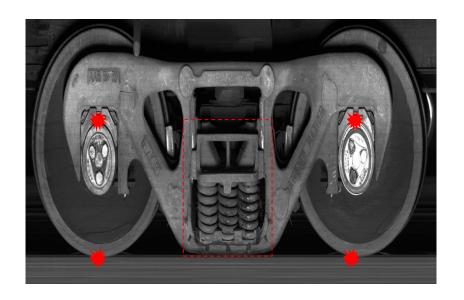
A oficina do km 460 segregou os rolamentos alarmados em RailBAM de outubro de 2018 a janeiro de 2019, identificando o truque e encaminhando a PI para análise, sendo foi verificado que 49% dos alarmes eram em truques Ride Master Retrofit 6.1/2"x9"

Impactam vagões – Reserva Elástica nos Truques GDT

RailBAM vs % Reserva Elástica nos VGs com RailBAM

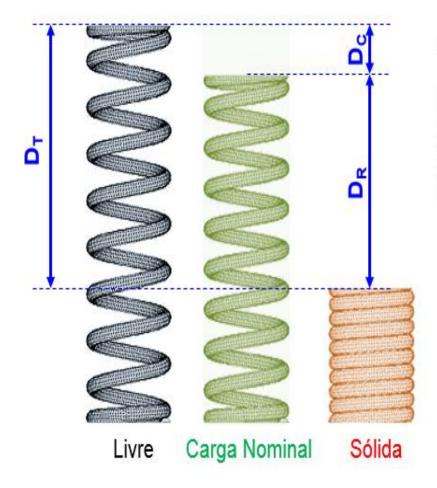
Função das cunhas e pacote de molas

Amortecimento do Truque: É composto por MOLAS DA SUSPENSÃO e CUNHAS DE FRICÇÃO, o conjunto de amarelecimento tem como função amortecer alguns movimentos verticais indesejados que ocorre na dinâmica veicular devido a irregularidade e geometria de VIA, na ausência ou deficiência deste conjunto os esforços são intensificado no veiculo e na VIA.


Fatores que reduzem o desempenho do Amortecimento do Truque:

- Reserva elástica Baixa
- Cunha Alta
- Peso do vagão maior do que o determinado por projeto

Função das cunhas e pacote de molas


Pontos Críticos

- Mola sólida aumenta os esforços sobre a VIA em até 2 VEZES.
- Simulações apontam que Reserva elástica menor que 15% apresenta iminência toque de espiras.
- Excesso de carga reduz a Reserva elástica e consequentemente a eficiência do amortecimento do truque

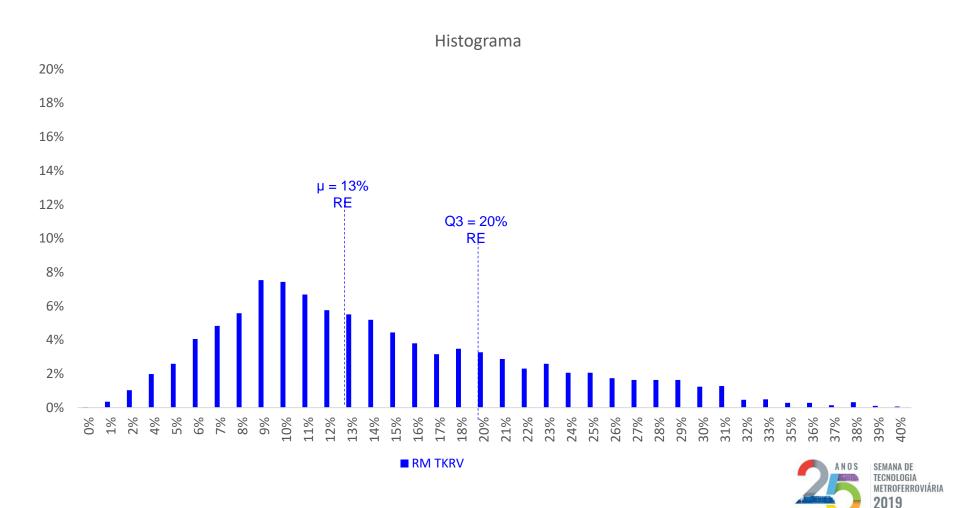
Apresentação do problema

$$RE = \frac{D_R}{D_T} \times 100$$

RE: % de Reserva Elástica

 D_T : Deflexão Total

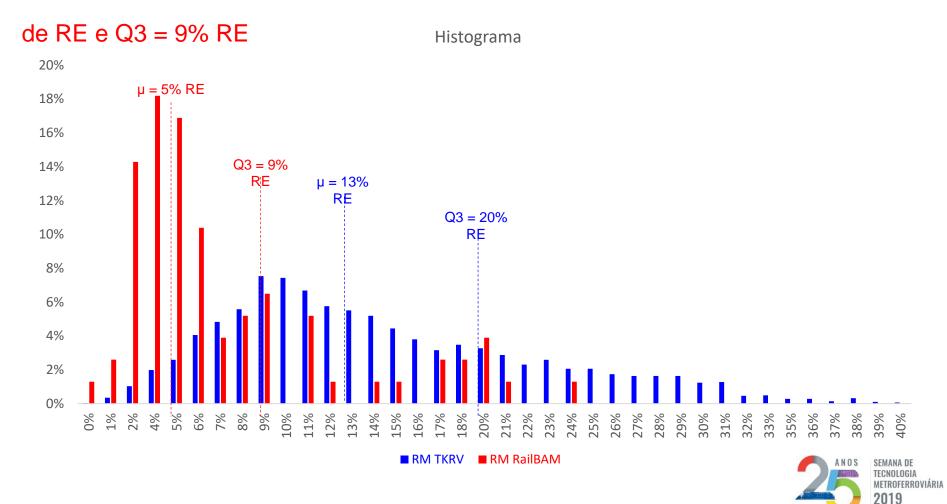
 D_C : Deflexão da Carga


D_R: Deflexão de Reserva

Impactam vagões – Reserva Elástica nos Truques GDT - Histograma

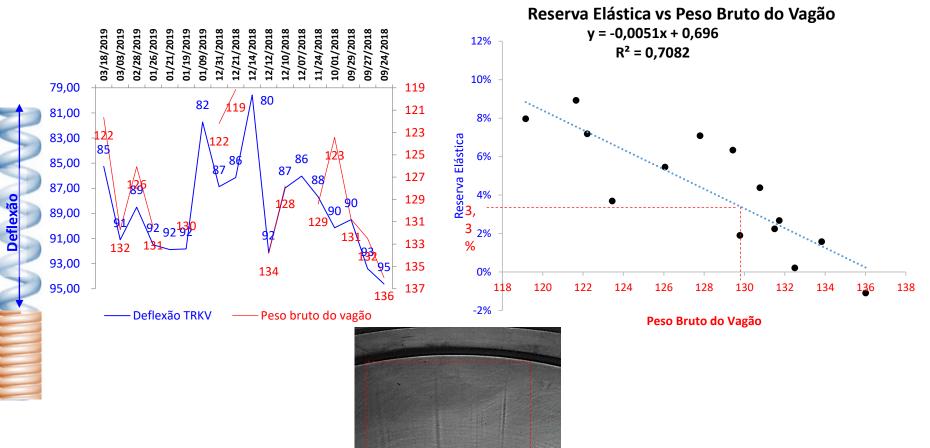
Frota Ride Master Retrofit 6.1/2"x9" de GDT - MRS: Mediana = 13% de RE e Q3

= 20% RE



Impactam vagões – Reserva Elástica nos Truques GDT - Histograma

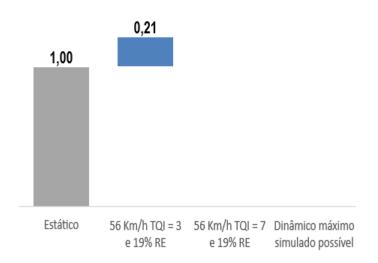
Frota Ride Master Retrofit 6.1/2"x9" de GDT - MRS: Mediana = 13% de RE e Q3


= 20% RE

Frota Ride Master Retrofit 6.1/2"x9" de GDT com RailBAM - MRS: Mediana = 5%

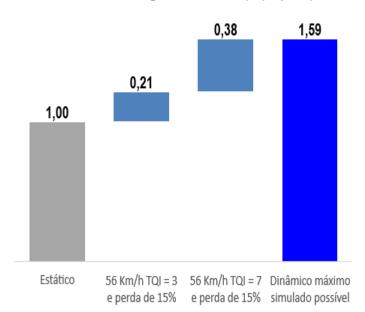
GDT- 612727 Reincidente RailBAM no mesmo Rolamento

RailBAM Eixo 2 – Lado Direito: 1° - Aberta em 04/09/2018 e Fechada em 08/10/2018 2° - Aberta em 20/03/2019



As simulações servem para nos orientar onde temos maior oportunidade e de melhoria, bem como traçar ações mais claras e factíveis.

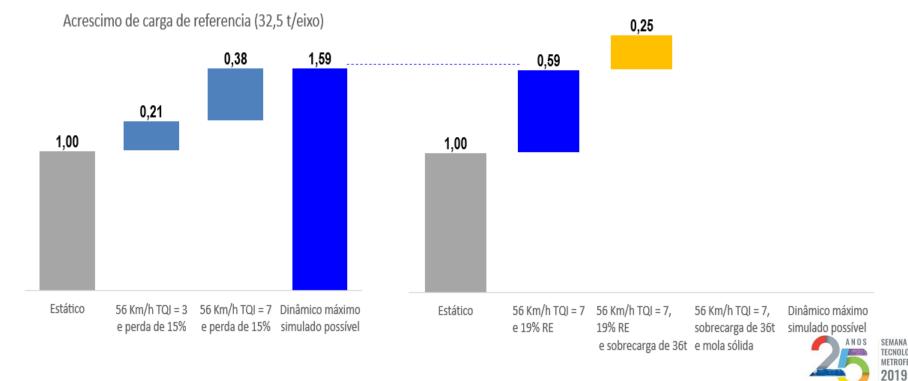
As irregularidades da via excita os veículos o que acarreta maior esforço sobre a mesma para um TQI 3 há um acréscimo de 21% no esforço


Acrescimo de carga de referencia (32,5 t/eixo)

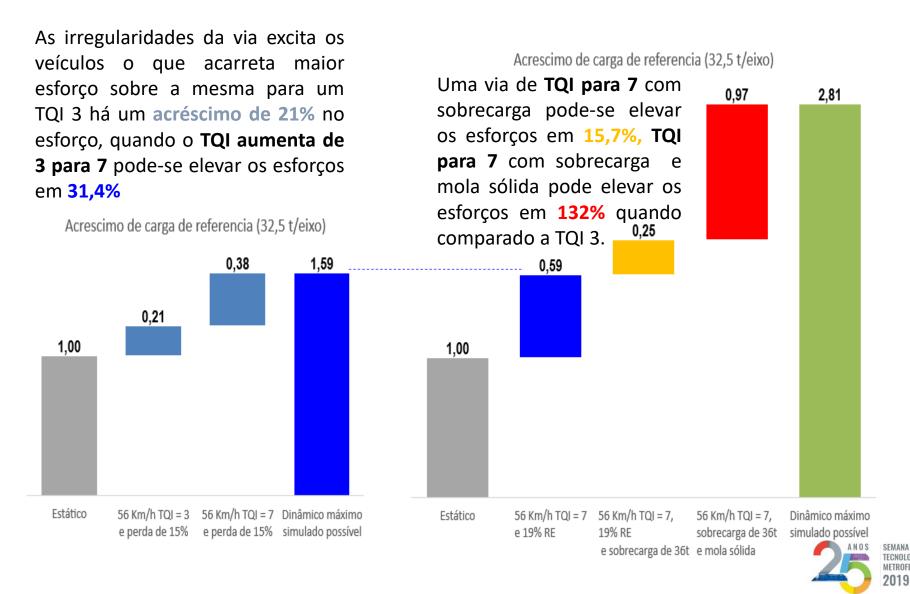
As simulações servem para nos orientar onde temos maior oportunidade e de melhoria, bem como traçar ações mais claras e factíveis.

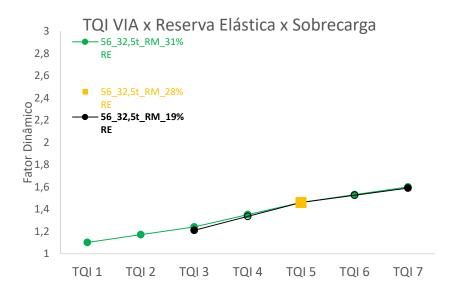
As irregularidades da via excita os veículos o que acarreta maior esforço sobre a mesma para um TQI 3 há um acréscimo de 21% no esforço, quando o TQI aumenta de 3 para 7 pode-se elevar os esforços em 31,4%

Acrescimo de carga de referencia (32,5 t/eixo)



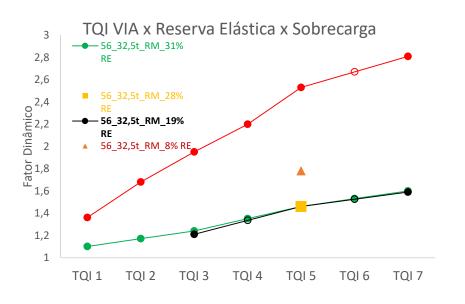
As simulações servem para nos orientar onde temos maior oportunidade e de melhoria, bem como traçar ações mais claras e factíveis.


As irregularidades da via excita os veículos o que acarreta maior esforço sobre a mesma para um TQI 3 há um acréscimo de 21% no esforço, quando o TQI aumenta de 3 para 7 pode-se elevar os esforços em 31,4%

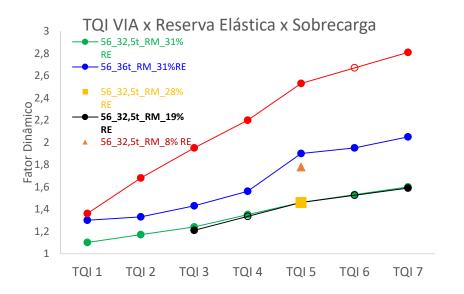

Acrescimo de carga de referencia (32,5 t/eixo)

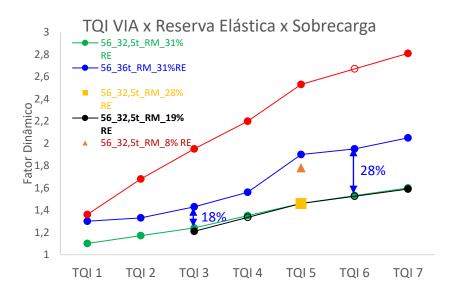
Uma via de **TQI para 7** com sobrecarga pode-se elevar os esforços em **15,7%**,

As simulações servem para nos orientar onde temos maior oportunidade e de melhoria, bem como traçar ações mais claras e factíveis.

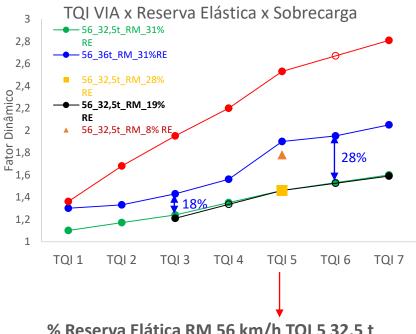


Master com reserva elástica 31%, 28% e 19% respectivamente, observou-se que o fator dinâmico varia linearmente com o TQI de 1,1 a 1,59 um acréscimo de 44,5% no fator dinâmico apenas com a variação do TQI, a variação na reserva praticamente não alterou o fator dinâmico;

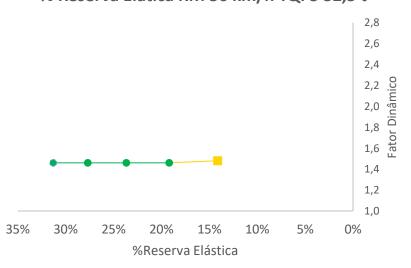

- 56_32,5t_RM_31%RE, 28%RE e 19%RE, Ride Master com reserva elástica 31%, 28% e 19% respectivamente, observou-se que o fator dinâmico varia linearmente com o TQI de 1,1 a 1,59 um acréscimo de 44,5% no fator dinâmico apenas com a variação do TQI, a variação na reserva praticamente não alterou o fator dinâmico;
- 56_32,5t_RM_8%RE, o fator dinâmico variou de 1,46 para 1,78 com um TQI 5 um acréscimo de 21,9% no fator dinâmico, devido a reserva do truque;


 56_32,5t_Sólida, o fator dinâmico varia linearmente com o TQI de 1,36 a 2,81 um acréscimo de 106,6% no fator dinâmico;

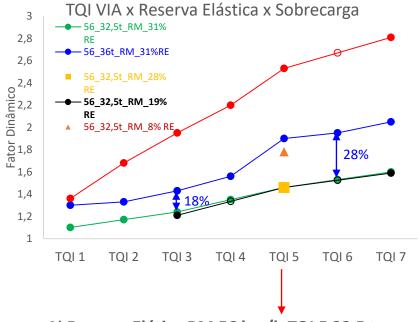
- 56_32,5t_RM_31%RE, 28%RE e 19%RE, Ride Master com reserva elástica 31%, 28% e 19% respectivamente, observou-se que o fator dinâmico varia linearmente com o TQI de 1,1 a 1,59 um acréscimo de 44,5% no fator dinâmico apenas com a variação do TQI, a variação na reserva praticamente não alterou o fator dinâmico;
- 56_32,5t_RM_8%RE, o fator dinâmico variou de 1,46 para 1,78 com um TQI 5 um acréscimo de 21,9% no fator dinâmico, devido a reserva do truque;

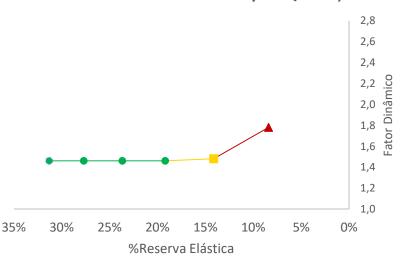

- 56_32,5t_RM_31%RE, 28%RE e 19%RE, Ride Master com reserva elástica 31%, 28% e 19% respectivamente, observou-se que o fator dinâmico varia linearmente com o TQI de 1,1 a 1,59 um acréscimo de 44,5% no fator dinâmico apenas com a variação do TQI, a variação na reserva praticamente não alterou o fator dinâmico;
- 56_32,5t_RM_8%RE, o fator dinâmico variou de 1,46 para 1,78 com um TQI 5 um acréscimo de 21,9% no fator dinâmico, devido a reserva do truque;

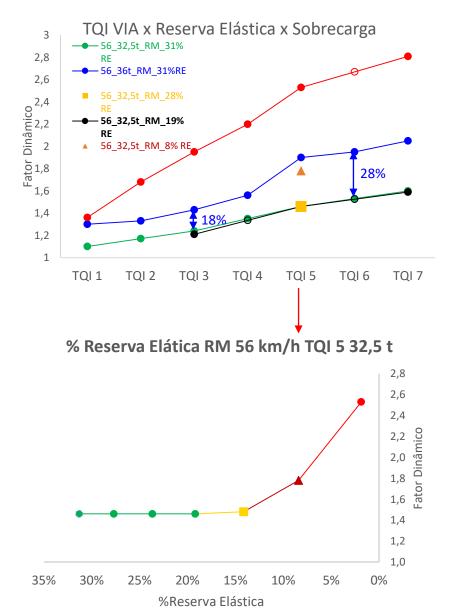
- 56_32,5t_Sólida, o fator dinâmico varia linearmente com o TQI de 1,36 a 2,81 um acréscimo de 106,6% no fator dinâmico;
- 56_36t_31%RE, com sobrecarga (36t/eixo), o fator dinâmico varia linearmente com o TQI 1 a TQI 4 de 1,30 a 1,56, um acréscimo de 20% no fator dinâmico, de um TQI 4 para TQI 5 temos um salto no fator dinâmico de 1,56 a 1,90, um acréscimo de 21,8% no fator dinâmico, para TQI 5 a TQI 7 varia linearmente chegando a um fator dinâmico de 2,05 para TQI 7;



- 56_32,5t_RM_31%RE, 28%RE e 19%RE, Ride Master com reserva elástica 31%, 28% e 19% respectivamente, observou-se que o fator dinâmico varia linearmente com o TQI de 1,1 a 1,59 um acréscimo de 44,5% no fator dinâmico apenas com a variação do TQI, a variação na reserva praticamente não alterou o fator dinâmico;
- 56_32,5t_RM_8%RE, o fator dinâmico variou de 1,46 para 1,78 com um TQI 5 um acréscimo de 21,9% no fator dinâmico, devido a reserva do truque;


- 56_32,5t_Sólida, o fator dinâmico varia linearmente com o TQI de 1,36 a 2,81 um acréscimo de 106,6% no fator dinâmico;
- 56_36t_31%RE, com sobrecarga (36t/eixo), o fator dinâmico varia linearmente com o TQI 1 a TQI 4 de 1,30 a 1,56, um acréscimo de 20% no fator dinâmico, de um TQI 4 para TQI 5 temos um salto no fator dinâmico de 1,56 a 1,90, um acréscimo de 21,8% no fator dinâmico, para TQI 5 a TQI 7 varia linearmente chegando a um fator dinâmico de 2,05 para TQI 7;
 - **56_32,5t_RM_31%RE** para **56_36t_31%RE**, o modelo variou o peso por eixo de 32,5t para 36t, o fator dinâmico para TQI 1 a TQI 4 aumentou aproximadamente em **18%** e para TQI maior 4 o fator dinâmico aumentou aproximadamente em **28%**;


% Reserva Elática RM 56 km/h TQI 5 32.5 t


Reserva elástica variando de 31% a 14% em um TQI 5, o Fator Dinâmico não varia, porém reserva elástica entre 19% a 14% é observado toque de espiras, mas sem transferência de carga;

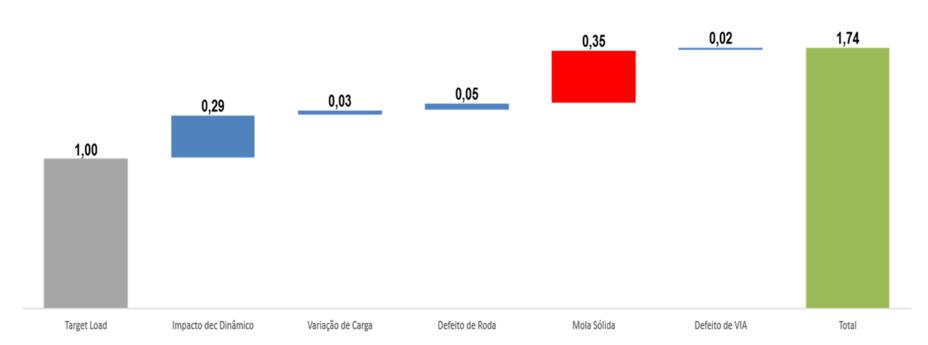
% Reserva Elática RM 56 km/h TQI 5 32,5 t

- Reserva elástica variando de 31% a 14% em um TQI 5, o Fator Dinâmico não varia, porém reserva elástica entre 19% a 14% é observado toque de espiras, mas sem transferência de carga;
- Reserva elástica variando de 14% a 8% há toque de espira com transferência de carga aumentando o fator dinâmico em 20,2%;

- Reserva elástica variando de 31% a 14% em um TQI 5, o Fator Dinâmico não varia, porém reserva elástica entre 19% a 14% é observado toque de espiras, mas sem transferência de carga;
- Reserva elástica variando de 14% a 8% há toque de espira com transferência de carga aumentando o fator dinâmico em 20,2%;
- Reserva elástica menor que 8% há toque de espira com transferência de carga severo aumentando o fator dinâmico em até 73% quando a Reserva igual a 0% (mola sólida);

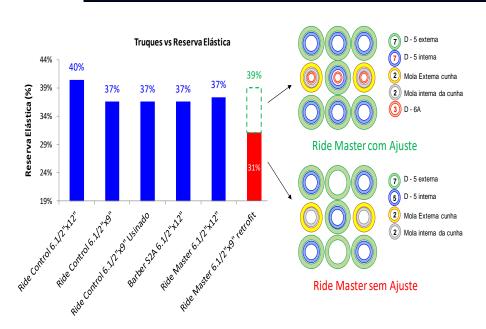
Instrumentação - Ponte Belizário

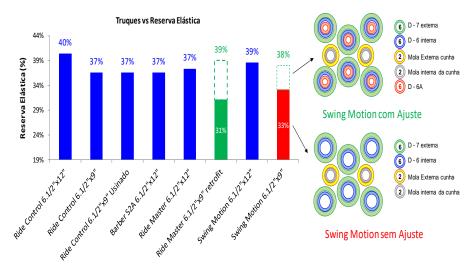
Grupo com 4 vagões


Grupo 1: GDU Pleno sem desvios

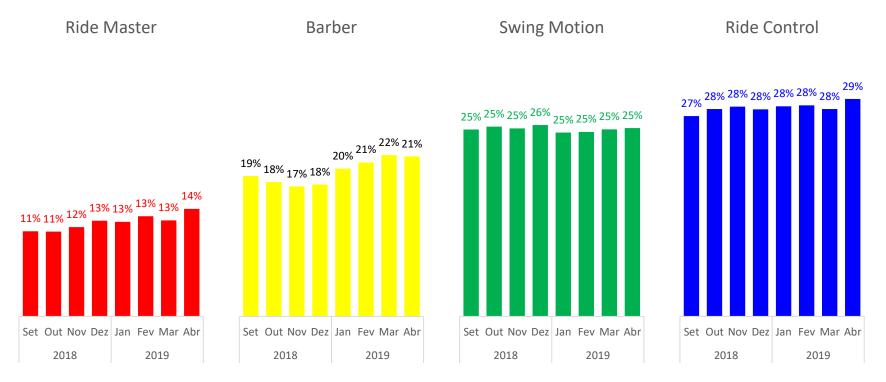
Grupo 2: GDT com desvio de Carregamento

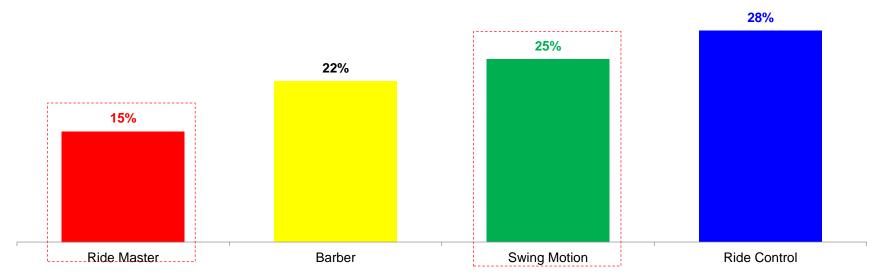
Grupo 3: GDT com defeito de Roda Grupo 4: GDT com mola cansada

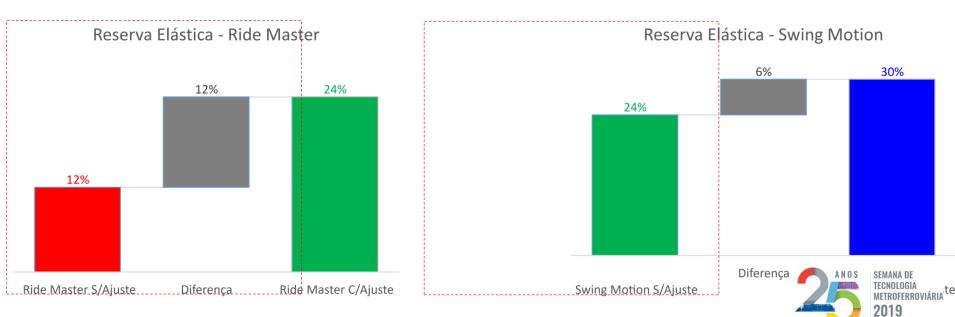


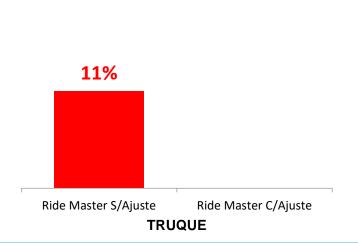

Acrescimo de carga de referencia (36 t/eixo)

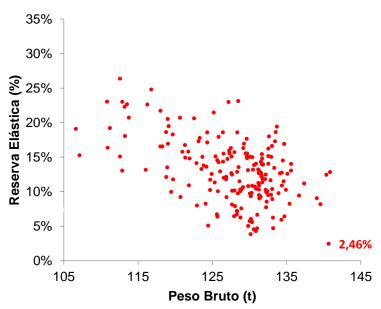
Reserva Elástica - Ajuste do Pacote RM e SM




- Mai/2018 Criação e Treinamento: EPS-ENG-6006 AJUSTE DOS PACOTES DE MOLAS DOS TRUQUES RIDE MASTER E SWING MOTION 6.1/2"x9" – PROJETO RESERVA;
- A partir Jun/2018 Todos os Truques Ride Master Retrofit 6.1/2"x9" e Swing Motion 6.1/2"x9" que entrarem para Revisão Geral, saem com o pacote ajustado segundo a EPS ENG;
- Previsão de Ajuste dos pacotes em 100% frota até Dez/2021, atualmente temos 14% com pacote ajustado;



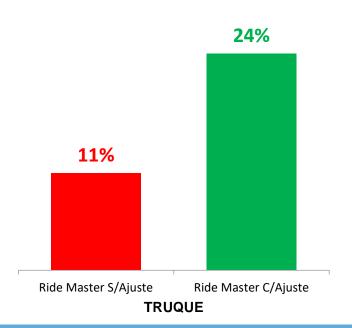


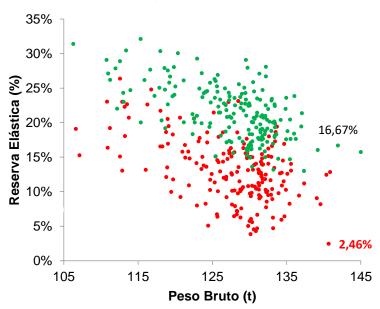

• Sem Ajuste há alta variabilidade no sistema, um carregamento de 140,67t a reserva elástica foi de 2,46%, , isto indica que os pacotes sem ajuste de reserva não devem ser carregados acima de sua capacidade nominal grande risco de tocar espiras.

RESERVA ELÁSTICA MÉDIA

Reserva vs Peso Bruto

• Ride Master sem Ajuste

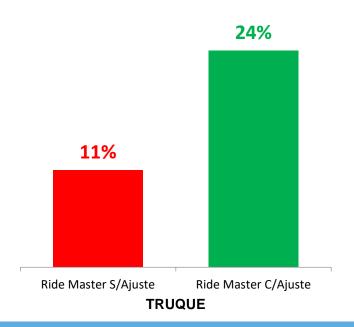


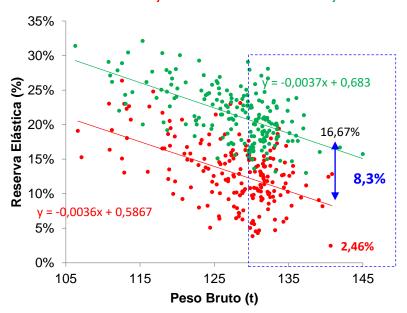

- Sem Ajuste há alta variabilidade no sistema, um carregamento de 140,67t a reserva elástica foi de 2,46%, , isto indica que os pacotes sem ajuste de reserva não devem ser carregados acima de sua capacidade nominal grande risco de tocar espiras.
- Com ajuste há alta variabilidade no sistema, um carregamento de 141,91t, resultando em uma reserva de 16,67%.

RESERVA ELÁSTICA MÉDIA

Reserva vs Peso Bruto

Ride Master sem Ajuste
 Ride Master com Ajuste

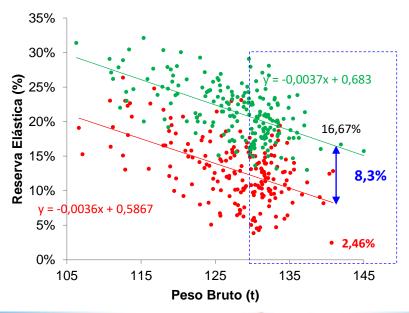



- Sem Ajuste há alta variabilidade no sistema, um carregamento de 140,67t a reserva elástica foi de 2,46%, , isto indica que os pacotes sem ajuste de reserva não devem ser carregados acima de sua capacidade nominal grande risco de tocar espiras.
- Com ajuste há alta variabilidade no sistema, um carregamento de 141,91t, resultando em uma reserva de 16,67%.
- As retas resultantes da regressão linear são quase paralelas, sendo a com ajuste 8,3% superior ao sem ajuste.

RESERVA ELÁSTICA MÉDIA

Reserva vs Peso Bruto

• Ride Master sem Ajuste • Ride Master com Ajuste


- Sem Ajuste há alta variabilidade no sistema, um carregamento de 140,67t a reserva elástica foi de 2,46%, , isto indica que os pacotes sem ajuste de reserva não devem ser carregados acima de sua capacidade nominal grande risco de tocar espiras.
- Com ajuste há alta variabilidade no sistema, um carregamento de 141,91t, resultando em uma reserva de 16,67%.
- As retas resultantes da regressão linear são quase paralelas, sendo a com ajuste 8,3% superior ao sem ajuste.
- Nota-se que os vagões são frequentemente carregados acima da sua capacidade nominal de 130t.

RESERVA ELÁSTICA MÉDIA

11% Ride Master S/Ajuste Ride Master C/Ajuste TRUQUE

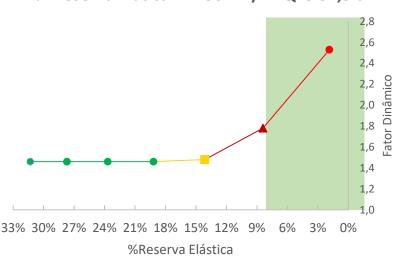
Reserva vs Peso Bruto

• Ride Master sem Ajuste • Ride Master com Ajuste

Conclusões

- Rolamentos instalados em Truques Ride Master Retrofit 6.1/2"x9" sem
 ajuste do pacote de molas são mais suscetíveis a ocorrências de
 Brinelamento, visto que tem baixa reserva elástica;
- Quanto maior o TQI da via maior o aumento do fator dinâmico;
- Reserva elásticas menores que 14% estão na eminencia de tocar espiras o que pode ter como consequência danos ao rolamento e na via devido ao aumento do fator dinâmico;
- Truques Ride Master Retrofit 6.1/2"x9" sem ajuste não devem ser carregados acima da capacidade nominal visto que a reserva elástica é baixa.
- Mola sólida apresentou nas simulações bem como na instrumentação o maior impacto sobre a via.

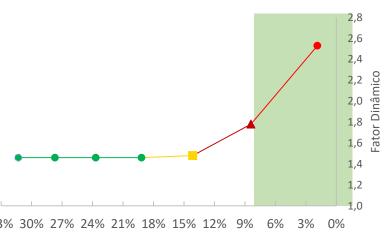
Sugestão


- Vagões com Alarme RailBAM e Reserva inferior a 9% devem junto com a solicitação de RailBAM colocar a solicitação de SUSPENSÃO COM PERDA DE CAPACIDADE - SEVERO;
- No tratamento da SUSPENSÃO COM PERDA DE CAPACIDADE –
 SEVERO de Ride Master, ter como obrigatório o ajuste do pacote,
 talvez com recuperação e alterar o código do truque como U.
- Garantir junto com a Engenharia de Transporte um indicador de GDT > 130t, visto que o numero é crescente, pois pela ETE não se deve ter como rotina a utilização acima >130t;
- Verificar Junto ao PCM a possibilidade de encoste ou direcionar os vagões RM SEM AJUSTE para pelota;

Sugestão – Analises RailBAM e Reserva inferior a 9%

% Reserva Elática RM 56 km/h TQI 5 32,5 t

Reserva <= 9% Total por tipo % # # % Ride Control 0% 1050 23% 0 Barber 0% 3% 0 117 55% Ride Master 593 13% 2485 Swing Motion 0% 836 19% 0 Total Analisado 13% 4488 100%


593

Reserva elástica menor que 8% há toque de espira com transferência de carga severo aumentando o fator dinâmico em até 73% quando a Reserva igual a 0% (mola sólida);

Sugestão - Analises RailBAM e Reserva inferior a 9%

% Reserva Elática RM 56 km/h TQI 5 32,5 t

33% 30% 27% 24% 21% 18% 15% 12% 9% %Reserva Elástica

	Reserva <= 9%		Total por tipo	
	#	%	#	%
Ride Control	0	0%	1050	23%
Barber	0	0%	117	3%
Ride Master	593	13%	2485	55%
Swing Motion	0	0%	836	19%
Total Analisado	593	13%	4488	100%

- Reserva elástica menor que 8% há toque de espira com transferência de carga severo aumentando o fator dinâmico em até 73% quando a Reserva igual a 0% (mola sólida);
- 13% da frota de GDT com reserva elástica <9%, esta frota tem grande chance de gerar um Brinelamento nos rolamentos, estes 13% são todos Ride Master sem ajuste de pacote.

INFLUÊNCIA DA RESERVA ELÁSTICA DE TRUQUES FERROVIÁRIO NA VIA PERMANENTE E VAGÕES MRS

Nilton de Freitas Lucas de Castro Valente Felipe César Moreira Ciríaco Admilson Martins Da Silva Ramon Henrique de Paula Dutra

